7 research outputs found

    Von Datenmanagement zu Data Literacy: Informatikdidaktische Aufarbeitung des Gegenstandsbereichs Daten fĂĽr den allgemeinbildenden Schulunterricht

    Get PDF
    Die Thematisierung von Daten in der Informatik befindet sich seit über einem Jahrzehnt in einem Wandel, der nicht nur technische Neuerungen nach sich zieht, sondern auch eine umfassende Neubetrachtung der Erfassung, Speicherung und Nutzung von Daten verursachte und zur Bildung eines neuen umfassenden Fachgebiets Datenmanagement führte. Die Ausmaße dieser Entwicklung zeigen sich an der zunehmenden Verarbeitung komplexer Daten (Big Data), neuen Möglichkeiten zur Datenverarbeitung und -analyse (z. B. Datenstromsysteme, Data Mining) und nicht zuletzt an der Entstehung einer eigenen Data Science. Neben fachlichen Veränderungen unterliegt aber auch die gesellschaftliche Bedeutung von Daten einem Wandel: Daten stellen nicht mehr nur ein wichtiges und innovatives Thema der Informatik, sondern das zentrale Fundament der digitalen Gesellschaft dar. Auch der Informatikunterricht konzentriert sich seit Jahren eher auf tradierte Aspekte des Fachgebiets, wie Datenbanken und Datenmodellierung, während neuere Themen allenfalls als Unterrichtskontext aufgegriffen werden. Um eine aqäquate Grundlage für den Unterricht zu diesen Themen zu schaffen, die langlebigen Aspekte der fachlichen Entwicklungen zu identifizieren und somit einen zukunftssicheren Informatikunterricht zu ermöglichen, ist eine umfassende informatikdidaktische Aufarbeitung essenziell. Somit eröffnet sich durch diese Veränderungen deutliches Potenzial, nicht nur für die Informatikdidaktik, sondern auch für die Unterrichtspraxis. In dieser Arbeit wird daher der Gegenstandsbereich Daten und insbesondere das Fachgebiet Datenmanagement aus informatikdidaktischer Sicht umfassend aufgearbeitet, mit dem Ziel ein Fundament für die weitere Forschung und die Unterrichtspraxis zu schaffen. Dazu wird das Modell der Didaktischen Rekonstruktion als Forschungsrahmen eingesetzt und das Fachgebiet aus den Perspektiven Fach, Lehrer, Schüler und Gesellschaft untersucht. Als eines der zentralen Ergebnisse wird, basierend auf einem empirisch geprägten Ansatz, ein Modell der Schlüsselkonzepte des Datenmanagements entwickelt. Um den Bogen zu allgemeinbildenden Datenkompetenzen im Sinne einer Data Literacy zu spannen, entsteht außerdem ein Data-Literacy-Kompetenzmodell, das auf Grundlagen des Datenmanagements und der Data Science fundiert wird. Um die praktische Relevanz der Ergebnisse der Arbeit zu unterstreichen, wird auf Basis der gewonnenen Erkenntnisse die Umsetzung von Datenmanagement im Informatikunterricht skizziert. Dazu werden zwei Unterrichtswerkzeuge sowie eine Unterrichtssequenz entwickelt und erprobt. Diese Arbeit schafft somit nicht nur eine Orientierung und Basis für die weitere Forschung im Kontext Daten, sondern sorgt durch die fachliche Klärung des Fachgebiets Datenmanagement auch dafür, dass dessen Kernaspekte greifbarer und klarer erkennbar werden. Sie zeigt exemplarisch, dass auch moderne und komplex erscheinende Themen des Datenmanagements unter Berücksichtigung der zugrundeliegenden Konzepte für den Unterricht geeignet aufbereitet werden können und betont die Relevanz dieser Themen, die in einer digitalen Gesellschaft und im Sinne der Schaffung einer Data Literacy zukünftig einen größeren Stellenwert im Informatikunterricht erlangen müssen

    An Integrated Diversity Switching GPS Receiver for Sounding Rocket Missions

    No full text
    GPS is widely used on sounding rocket missions for providing position, velocity and timing information for onboard control systems and experiment payloads. The spin stabilisation of many sounding rockets allows only one antenna fitted in the nosecone to give a reliable GPS performance. If the nosecone is not available for antenna placement due to experiment or vehicle restrictions, two different methods are currently used. Wrap-around antennas do have an almost spherical field of view and provide an uninterrupted view of the GPS satellites. These antennas have to be adapted to each launch vehicle which results in high non-recurring engineering costs and high unit prices. A common method for cost sensitive missions is the use of two or more antennas connected to a power combiner to produce an omni-directional field of view. This approach leads to destructive interference in certain directions and limits the maximum spin rate. The paper presents a GPS receiver which uses two antennas and a diversity algorithm to eliminate the problems encountered with RF power combiners. The signal power of each antenna is constantly evaluated and used as an input into the diversity algorithm. The digital intermediate-frequency data is then combined and then subsequently used to calculate the PVT solution. The limited performance of embedded systems poses restrictions on the complexity of the diversity algorithm. A selection combining approach is implemented in the Namuru V2 GNSS receiver (Mumford et al.). A specialised FPGA hardware has been developed to take care of signal correlation and power calculation for each antenna. Special care is taken to ensure a correct demodulation of the navigation data. Testing has been conducted using a two channel Spirent GSS7700 GPS simulator as well as on a 432mm diameter rocket structure mounted on a turn table. Spin rates of up to 4Hz have been successfully tested in simulation and 3Hz in field testing. The tests have shown the ability of the receiver to acquire satellites, decode navigation data and provide a PVT solution even at high spin rates. It has further been demonstrated that a continuous tracking of satellites is achieved during realistic spin rate profiles. The simulator and open sky tests are compared with a traditional dual antenna system with passive power combiner and discussed in this paper

    The Kodiak GNSS Receiver for Microlaunchers and Sounding Rockets

    No full text
    There have been big changes to the number and variety of Global Navigation Satellite Systems in the past decade. While commercial manufacturers have quickly provided solutions for the mass-market and high-budget missions, there is still a gap in affordable receivers specialized for microlaunchers and sounding rocket missions. Based on GSOC's experience with the Phoenix GPS receiver, which has flown on numerous sounding rockets and small satellite missions over the past decade, the Kodiak GNSS receiver has been developed. With its modu-lar design approach and source code access, the Kodiak receiver can be tailored to a specific mission while keeping the overall complexity of the system as low as possible. The receiver uses a System-on-Chip FPGA with a dual-core ARM processor. Special care has been paid to ensure the exact synchronization of ex-ternal Inertial Measurement Units (IMU) with the receiver time while the re-ceiver interfaces also allow synchronization of other sensors, for example a sun sensor. The paper provides a description of the Kodiak GNSS Receiver devel-opment and verification. It discusses the results of the rocket flight experiment and compares the Kodiak results with the performance of the other on-board sensors. Conclusions of the experiment are drawn and the planned future work is discussed

    Performance Analysis of an IMU-Augmented GNSS Tracking System on board the MAIUS-1 Sounding Rocket

    No full text
    Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds

    THE NAMURU RECEIVER AS DEVELOPMENT PLATFORM FOR SPACEBORNE GNSS APPLICATIONS

    Get PDF
    GPS is a well established navigation system in current spaceflight missions. Affordable GPS receivers for small satellite and sounding rocket missions are usually based on Commercial Off The Shelf (COTS) products. Many of these receivers are limited to single frequency tracking and utilise custom ASICs for the signal processing. The Phoenix receiver is an example of a commercially available receiver with custom software modifications by DLR. This receiver is based on the GP2021 baseband processor and is therefore not flexible enough to implement anything else besides GPS L1 tracking. To overcome this limitation it has been decided to migrate to the Namuru GNSS receiver platform for the development of new GNSS applications. The Namuru system is based on a reconfigurable FPGA and has been developed by the University of New South Wales (UNSW). This platform allows the baseband processing hardware to be completely customised and allows the implementation of software for different areas of research. The DLR’s research projects aim at multiple frontend systems, new signals and spaceborne GNSS reflectometry. As a first step we have ported the flight proven Phoenix software to the Namuru receiver. The accuracy of the navigation solution has been validated in both low earth orbit and ballistic rocket simulations and a comparison with the Phoenix receiver is shown. In the second step, an antenna array system for spaceborne GNSS reflectometry is being implemented. Narrowband Beamforming is performed after carrier demodulation or PRN correlation, significantly lowering the requirements for the analogue front-end and at th
    corecore